This is the second part of a two-part post. The first post, describing the function of ion propulsion engines, may be found here.
Ion thrusters have many advantages over other forms of propulsion. In comparison with traditional chemical propellent, they are roughly 10 times more efficient, lightening the load of space-traveling craft and saving massive amounts of fuel for launch. This efficiency originates in part from the higher exhaust velocity of the xenon propellant particles, which are ejected from the spacecraft at speeds of 20-50 km/s! In addition, the electric power required to run ion engines is relatively small, on the order of a few kilowatts. In comparison, a typical microwave oven consumes 1.1 kW, and the power consumption is significantly less than that of a typical automobile. Solar panels can meet this power demand during flight, allowing ion thrusters to create smooth and continuous acceleration over the entire duration of a mission.
However, this efficiency comes at a price: ion propulsion produces very small thrusts. The first model of ion engine actually used in spaceflight, the NSTAR engine, produced a thrust of around 90 millinewtons. This is the same force that your hand would experience from a single piece of paper on Earth by gravity, a barely detectable force! However, this minute force can operate continuously, adding up to a significant acceleration over time in the frictionless environment of space. In comparison, space probes which operate on chemical propellant may exert thrusts in the hundreds or thousands of newtons (the equivalent of a couple hundred pounds at Earth's surface), but only for very short times.
The small thrust of ion engines pales even more in comparison to that of rockets that launch payloads from Earth's surface. To escape Earth's gravity, such rockets must exert a force greater than the force of gravity on the often huge rockets. For example, the Saturn V rocket (shown above) that launched humans to the Moon generated an astounding 34,500,000 newtons of thrust at launch. For this reason, ion engines cannot be used to launch spacecraft.
The idea of electric rock propulsion dates to the 1930's and the first test of ion engines in space came during the 1960's. However, no operational mission utilized ion thrusters until NASA's Deep Space 1 probe, launched in 1998. This spacecraft performed a flyby of the asteroid 9989 Braille and the comet 19P/Borrelly. To meet the acceleration requirements of the mission extension to comet Borrelly, Deep Space 1 changed its velocity by 4.3 km/s using less than 74 kilograms of xenon. The Hayabusa probe, launched by the Japan Aerospace Exploration Agency (JAXA) in 2003, was another important demonstration of ion thruster technology. This probe used ion thrusters on its mission to land on the near-Earth asteroid 25143 Itokawa, collect samples, and return them to Earth for analysis. In 2010, the probe successfully returned the sample to Earth, completing the first ever asteroid sample return mission. Hayabusa 2, another asteroid sample return mission, launched in 2014 with similar objectives.
An even greater demonstration of ion propulsion technology began in 2007 with the launch of the Dawn spacecraft. This spacecraft carried three ion engines, operating alternately throughout the mission. Thrusting frequently throughout its eight-year journey, Dawn followed a spiral outward from the Earth, past Mars, into orbit of the asteroid Vesta, and subsequently into orbit of the asteroid Ceres.
The above image shows Dawn's outward spiral as well as the intervals during which one of its ion engines was in operation. With the exception of the gravitational assist at Mars, Dawn thrusted almost continuously, moving outward under its own power. Its total velocity change exceeded 10 km/s, the greatest yet for a spacecraft under its own power. When it successfully entered orbit around Ceres in April 2015, Dawn became the first spacecraft to orbit two different extraterrestrial targets. This feat would not have been possible using traditional methods of chemical propulsion.
Meanwhile, advances continued in ion thruster technology. NASA's Evolutionary Xenon Thruster (NEXT) performed a 48000 hour test in a vacuum chamber lasting from 2004 to 2009 to demonstrate its successful operation. Using power at a higher rate but also providing somewhat greater thrust, the NEXT engine (shown above) is at least 30% more efficient than its predecessors and can operate for a longer time. Continued development of ion propulsion technology promises to provide the foundation necessary for more ambitious interplanetary space missions.
Sources: http://www.extremetech.com/extreme/144296-nasas-next-ion-drive-breaks-world-record-will-eventually-power-interplanetary-missions, http://www.nasa.gov/centers/glenn/about/fs08grc.html, https://www.nasa.gov/audience/foreducators/rocketry/home/what-was-the-saturn-v-58.html#.VV8XomCprzI, http://darts.isas.jaxa.jp/planet/project/hayabusa/index.htmlhttp://science.nasa.gov/science-news/science-at-nasa/1999/prop06apr99_2/, http://alfven.princeton.edu/papers/sciam2009.pdf, http://dawn.jpl.nasa.gov/mission/
Friday, January 22, 2016
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment