The Earth constantly is bombarded with a large amount of radiation from the cosmos. Much of this radiation is electromagnetic, coming in the form of radio waves, microwaves, infrared rays, visible light, ultraviolet rays, X-rays, and gamma rays. All of these types, however, are composed of photons, massless particles which travel at the speed of light. Other subatomic particles also compose incoming radiation, falling into the umbrella of "cosmic rays".
We cannot take detailed images of the cosmos with cosmic rays like we can with electromagnetic radiation. This is because the particles composing this radiation are charged, and thus change direction and speed when influenced by the magnetic fields of the Sun and Earth. As a result, we cannot directly ascertain the direction from which these particles come. Nevertheless, cosmic rays help us understand the composition of objects in the cosmos. In addition, since the particles making up cosmic rays have mass, they often require huge amounts of acceleration to reach us. The fact that the particles reached Earth at all reveals clues about the nature of the objects from which they came.
Cosmic rays have two main characteristics: composition and energy. We explore each in turn.
Cosmic rays are generally composed of the nuclei of atoms, though other particles appear as well, such as electrons. The extreme energy and speed of these former atoms stripped them of their electrons, leaving positively charged nuclei and negatively charged electrons, each of which are influenced by magnetic fields, as described above. Of these types of particles, hydrogen and helium nuclei (protons and alpha particles), the lightest two elements, are by far the most abundant in cosmic rays. Further, the proportions of hydrogen and helium nuclei in cosmic rays, ~90% and ~9%, respectively, are very consistent with the proportion of atoms in the Universe which are hydrogen and helium.
The above diagram illustrates the relative abundance of the chemical elements (in increasing order) in the Universe, as estimated through indirect means such as spectroscopy, an observational method which uses facts about how different elements absorb and reflect light to discern the composition of celestial objects. Note the relative rarity of lithium, beryllium, and boron, despite the fact that these are very light elements (atomic numbers 3, 4, and 5). The reason for this lack is that these elements are not heavily produced during stellar fusion, occurring only as intermediates in nuclear reactions that either produce helium or heavier elements like carbon. However, the nuclei of these three elements compose 0.25% of cosmic rays, more than a million times greater than what we would expect from the Universe's composition!
It is believed that these elements are disproportionately represented in cosmic rays due to collisions between "original" cosmic rays containing protons and atoms in the interstellar medium, such as carbon or oxygen. Such interactions may produce energetic lithium, beryllium, or boron nuclei as a byproduct, and these particles subsequently reach Earth. The fact that the products of these collisions are energetic and thus more likely to reach Earth explains why these elements are disproportionally represented in cosmic rays. The nuclei of elements of higher atomic numbers also appear more frequently in cosmic rays than we would "expect" from the abundance graph above. This shows that cosmic rays tend to come from sources rich in heavy elements, such as supernovae.
Antiparticles also make infrequent appearances in cosmic rays. An estimated 0.01% of cosmic rays are composed of antimatter. In fact, cosmic rays led to the original discovery of antimatter. In 1928, Paul Dirac, using the mathematics of quantum theory, including Schrödinger's Wave Equation, predicted the existence of antimatter. Antimatter was at the time an undiscovered class of particles each of which would be an "opposite" counterpart to an ordinary particle (opposite in some properties, such as charge, but not in others, such as mass, which must always be positive or zero). One example is the antielectron, also known as the positron, which would have the same mass as the electron, but a positive, rather than negative, charge. This charge, through opposite, is of the same magnitude as the electron's. In 1932, Carl D. Anderson observed a cosmic ray composed of a positron, using a device known as a cloud chamber.
Antimatter, however, does not exist in abundance in the Universe. Matter and antimatter particles annihilate on contact, producing energy, so due to a slight matter-antimatter imbalance following the Big Bang (the origins of which are still unknown), the known Universe is dominated by matter. However, just as matter and antimatter particles can annihilate and form energy, energy may also spontaneously (during certain quantum interactions) be converted into a particle-antiparticle pair through a phenomenon known as pair production.
This diagram illustrates the formation of an electron (e-) and its antiparticle the positron (e+) from a gamma ray photon (γ). This instance of pair production often happens when a high-energy photon impacts the nucleus of an atom. The number of cosmic rays composed of antimatter which impact the Earth over a given period helps us to estimate the frequency of these reactions in space. Cosmic rays also often cause chain reactions in the Earth's atmosphere. In fact, this is how these rays are often detected.
The above image illustrates the cascade of particles that can occur when a cosmic ray (especially a powerful one) hits Earth's atmopshere. The interaction proceeds from top to bottom and begins when the cosmic ray impacts an atom (all atoms involved are denoted by circles). This produces several short-lived particles known as pions (with the symbols π+, π-, and π0 depending on the charge). The left branch indicates the decay of the neutral pion into gamma rays, each of which forms an electron-positron pair through pair production, (presumably through more interaction with atmospheric matter) releasing other gamma rays which do the same. The center shows the main decay mode of the pion into a muon (denoted μ) and a muon antineutrino (not shown) or the corresponding antiparticles (if the initial pion charge is reversed). Muons too decay after around 2.2 microseconds, leaving their characterisitc signiture of particles. Finally, the right branch indicates how incoming cosmic rays might impact and destablize atomuc nuclei. These nuclei then emit protons, neutrons, or tiny particles called neutrinos. Sometimes the emitted neutrons and protons hit other atoms, and the chain reaction continues.
The length of such a chain reaction depends on the energy of the original cosmic ray. Sufficiently energetic cosmic rays can cause huge chain reactions which reach the Earth's surface, allowing us to observe them. To see how energy affects the behavior of cosmic rays and can reveal more about their origins, see the next post.
Sources: http://helios.gsfc.nasa.gov/cosmic.html, http://imagine.gsfc.nasa.gov/docs/science/know_l1/cosmic_rays.html, http://hyperphysics.phy-astr.gsu.edu/hbase/astro/cosmic.html#c2, http://imagine.gsfc.nasa.gov/docs/science/know_l2/cosmic_rays.html, http://abyss.uoregon.edu/~js/glossary/cosmic_rays.html, http://www.algebralab.org/practice/practice.aspx?file=Reading_RelativeAbundanceElementsUniverse.xml, http://jtgnew.sjrdesign.net/stars_fusion.html, http://www.whoi.edu/cms/files/ksims/2006/10/Cosmo_lect_2006_4SPP_14851.pdf, http://cosmos.phy.tufts.edu/~zirbel/ast21/sciam/AntiMatter.pdf, http://neutronm.bartol.udel.edu/catch/cr2b.gif,
Monday, February 2, 2015
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment